En analyse fonctionnelle et vectorielle, on appelle différentielle d'ordre 1 d'une fonction en un point a (ou dérivée de cette fonction au point a) la partie linéaire de l'accroissement de cette fonction entre a et a + h lorsque h tend vers 0. Elle généralise aux fonctions de plusieurs variables la notion de nombre dérivé d'une fonction d'une variable réelle, et permet ainsi d'étendre celle de développements limités. Cette différentielle n'existe pas toujours, et une fonction possédant une différentielle en un point est dite différentiable en ce point. On peut ensuite calculer des différentielles d'ordre supérieur à 1.
- Rappels de calcul différentiels.
- Théorème d’inversion locale
- Théorème des fonctions implicites